Anat Cell Biol 2023; 56(2): 271-275
Published online June 30, 2023
https://doi.org/10.5115/acb.22.223
Copyright © Korean Association of ANATOMISTS.
Yusra Mansour1 , Randy Kulesza2
1Department of Otolaryngology, Henry Ford Macomb Hospital, Detroit, MI, 2Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
Correspondence to:Randy Kulesza
Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
E-mail: rkulesza@lecom.edu
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
The abducens nerve (AN; cranial nerve VI) exits the brainstem at the inferior pontine sulcus, pierces the dura of the posterior cranial fossa, passes through the cavernous sinus in close contact to the internal carotid artery (ICA) and traverses the superior orbital fissure to reach the orbit to innervate the lateral rectus muscle. At its exit from the brainstem, the AN includes only axons from lower motor neurons in the abducens nucleus. However, as the AN crosses the ICA it receives a number of branches from the internal carotid sympathetic plexus. The arrangement, neurochemical profile and function of these sympathetic axons running along the AN remain unresolved. Herein, we use gross dissection and microscopic study of hematoxylin and eosin-stained sections and sections with tyrosine hydroxylase immunolabeling. Our results suggest the AN receives multiple bundles of unmyelinated axons that use norepinephrine as a neurotransmitter consistent with postganglionic sympathetic axons.
Keywords: Anatomy, Dissection, Nervous system, Sympathetic nervous system